Fluent Bit
Fluent Bit is a lightweight and scalable logging and metrics processor and forwarder. Fluent Bit can be configured to send logs to Parseable with HTTP output plugin and JSON output format.
This document explains how to set up Fluent Bit to ship logs to Parseable Docker Compose and Kubernetes. This should give you an idea on how to configure the output plugin for other scenarios.
For demo purpose, we used Fluent Bit's Memory Metrics Input plugin as the source of logs.
Docker Compose
Please ensure Docker Compose installed on your machine. Then run the following commands to set up Parseable and Fluent Bit.
mkdir parseable
cd parseable
wget https://www.parseable.com/fluentbit/fluent-bit.conf
wget https://www.parseable.com/fluentbit/docker-compose.yaml
docker-compose up -dYou can now access the Parseable dashboard on http://localhost:8000. You should see a dataset called fluentbitdemo populated with log data generated by the Memory Metrics Input plugin.
Kubernetes
How does Fluent Bit runs in a K8s cluster
- Fluent Bit runs as a DaemonSet → Deploys on every node to collect logs.
- Watches
/var/log/containers/*.log→ Reads container logs from the node’s filesystem. - Filters and enriches logs → Extracts Kubernetes metadata, merges multi-line logs.
- Compresses & sends logs → Pushes logs to Parseable over HTTP with Gzip compression.
Pre-Requisites
- Please ensure
kubectlandhelminstalled and configured to access your Kubernetes cluster. - Parseable installed on your Kubernetes cluster. Refer the Parseable Kubernetes documentation.
Install Fluent Bit
We use the official Fluent Bit Helm chart to install Fluent Bit. But, we'll use a modified values.yaml file, that contains the configuration for Fluent Bit to send logs to Parseable.
wget https://www.parseable.com/fluentbit/values.yaml
helm repo add fluent https://fluent.github.io/helm-charts
helm install fluent-bit fluent/fluent-bit --values values.yaml -n fluentbit --create-namespaceLet's take a deeper look at the Fluent Bit configuration in values.yaml. Here we use the kubernetes filter to enrich the logs with Kubernetes metadata. We then use the http output plugin to send logs to Parseable. Notice the Match section in the http output plugin. We use kube.* to match all logs from Kubernetes filter. With the header X-P-Stream fluentbitdemo, we tell Parseable to send the logs to the fluentbitdemo dataset.
filters: |
[FILTER]
Name kubernetes
Match kube.*
Merge_Log On
Keep_Log Off
K8S-Logging.Parser On
K8S-Logging.Exclude On
outputs: |
[OUTPUT]
Name http
Match kube.*
host parseable.parseable.svc.cluster.local
uri /api/v1/ingest
port 80
http_User admin
http_Passwd admin
format json
compress gzip
header Content-Type application/json
header X-P-Stream fluentbitdemo
json_date_key timestamp
json_date_format iso8601[FILTER] Section - Enriching Logs with Kubernetes Metadata
[FILTER]
Name kubernetes
Match kube.*
Merge_Log On
Keep_Log Off
K8S-Logging.Parser On
K8S-Logging.Exclude OnThis section processes logs before sending them out.
-
Name kubernetes→ Enables the Kubernetes filter, which fetches metadata (like Pod name, Namespace, Container ID). -
Match kube.*→ Applies the filter to logs tagged as "kube.*" (which typically means logs from Kubernetes containers). -
Merge_Log On→ Merges multi-line logs into a single structured log (e.g., stack traces). -
Keep_Log Off→ Removes the original unstructured log after enrichment (saves space). -
K8S-Logging.Parser On→ Uses parsers to extract structured log fields (if JSON or logfmt is detected). -
K8S-Logging.Exclude On→ Removes Kubernetes annotations that aren’t useful for logs.
[OUTPUT] Section - Forwarding to Parseable
[OUTPUT]
Name http
Match kube.*
host parseable.parseable.svc.cluster.local
uri /api/v1/ingest
port 80
http_User admin
http_Passwd admin
format json
compress gzip
header Content-Type application/json
header X-P-Stream fluentbitdemo
json_date_key timestamp
json_date_format iso8601This section defines where Fluent Bit sends logs.
-
Name http→ Sends logs using the HTTP output plugin. -
Match kube.*→ Only sends logs tagged as "kube.*" (i.e., Kubernetes logs). -
host parseable.parseable.svc.cluster.local→ Uses Kubernetes DNS resolution to reach Parseable's service inside the cluster.-
uri /api/v1/ingest→ Sends logs to Parseable’s ingestion API. -
port 80→ Connects via port 80 (default HTTP port).
-
-
http_User admin & http_Passwd admin→ Uses Basic Authentication. -
format json→ Sends logs in JSON format. -
compress gzip→ Compresses logs before sending → reduces bandwidth & storage costs. -
header Content-Type application/json→ Ensures correct content type for the API. -
header X-P-Stream fluentbitdemo→ Assigns logs to the "fluentbitdemo" dataset in Parseable. -
json_date_key timestamp→ Sets the timestamp field in logs as "timestamp". -
json_date_format iso8601→ Uses the ISO 8601 format (YYYY-MM-DDTHH:MM:SSZ).
Check logs in Parseable
Port forward Parseable service to access the dashboard with:
kubectl port-forward svc/parseable 8000:80 -n parseableYou can now check the Parseable server fluentbitdemo dataset to see the logs from this setup.
Batching and Compression
Parseable supports batching and compressing the log data before sending it via HTTP POST. Fluent Bit supports this feature via the compress and buffer_max_size option. We recommend enabling both of these options to reduce the number of HTTP requests and to reduce the size of the HTTP payload.
Adding custom columns
In several cases you may want to add additional metadata to a log event. For example, you may want to append hostname to each log event, so filtering becomes easy at the time of debugging. This is done using lua scripts. Here is an example:
Use a Lua function to create some additional entries in the log record
function append_columns(tag, timestamp, record)
new_record = record
-- Add a static new field to the record
new_record["environment"] = "production"
-- Add a dynamic field to the record
-- We get the env variable HOSTNAME from the Docker container
-- Then we add it to the record
hostname = os.getenv("HOSTNAME")
new_record["hostname"] = hostname
-- Return the new record
-- "1" means that the record is modified
-- "timestamp" is updated timestamp
-- "new_record" is the new record (after modification)
return 1, timestamp, new_record
endLua scripts are added to Fluent Bit as filters. To add this script as a filter, save the above script as filters.lua file. Place the filters.lua file in the same directory as rest of the Fluent Bit configuration files. Then add a filters section in the Fluent Bit config. For example:
[FILTER]
Name lua
Match *
Script filters.lua
Call append_columns
[OUTPUT]
Name http
Match *
host parseable
uri /api/v1/ingest
port 8000
http_User admin
http_Passwd admin
format json
compress gzip
header Content-Type application/json
header X-P-Stream fluentbitdemo
json_date_key timestamp
json_date_format iso8601Note that the [Input] section needs to be added.
Database Monitoring
PostgreSQL
Here we assume that the PostgreSQL is installed on a pod in the same k8s cluster as of Fluentbit. Read More on how to install PostgreSQl on K8s.
Update the volume mount once installed.
volumeMounts:
- name: pg-logs
mountPath: /var/lib/postgresql/data/pg_logEdit PostgreSQL Config (postgresql.conf)
sudo nano /etc/postgresql/15/main/postgresql.confModify the following settings:
logging_collector = on
log_directory = 'pg_log'
log_filename = 'postgresql.log'
log_statement = 'all'
log_connections = on
log_disconnections = on
log_min_duration_statement = 0Restart PostgreSQL
sudo systemctl restart postgresqlConnect to fluent bit using the config map
apiVersion: v1
kind: ConfigMap
metadata:
name: fluent-bit-config
namespace: logging
data:
fluent-bit.conf: |
[SERVICE]
Flush 1
Daemon Off
Log_Level info
Parsers_File parsers.conf
[INPUT]
Name tail
Path /var/log/postgresql/postgresql.log
Tag postgres.*
Parser postgres_parser
DB /var/log/postgresql/flb.db
Mem_Buf_Limit 5MB
Skip_Long_Lines On
Refresh_Interval 10
[FILTER]
Name modify
Match postgres.*
Add service postgresql
[OUTPUT]
Name http
Match *
Host parseable.parseable.svc.cluster.local
Port 80
URI /api/v1/ingest/postgres-logs
Format json
Header Content-Type application/jsonApply the config map
kubectl apply -f fluent-bit-config.yamlCheck if Fluent Bit is Sending Logs
kubectl logs -l name=fluent-bit -n loggingCheck if logs are reaching Parseable:
kubectl logs -l app=fluent-bit -n logging | grep postgresView Logs inPrism
Log in to Parseable and Navigate to "Streams" and click on postgres-logs (created automatically by Fluent Bit)
Search and filter logs based on timestamps, queries, errors, etc.
DeepDive into FluentBit configuration Use Case: Collecting Kubernetes Container Logs & Sending to Parseable This Fluent Bit configuration reads Kubernetes container logs, extracts structured fields using parsers, and sends them to Parseable.
Configuration
[SERVICE]
Flush 5
Daemon Off
Log_Level info
[INPUT]
Name tail
Path /var/log/containers/*.log
Tag kube.*
Parser docker
Refresh_Interval 5
Mem_Buf_Limit 10MB
Skip_Long_Lines On
DB /var/log/flb_kube.db
[FILTER]
Name kubernetes
Match kube.*
Kube_URL https://kubernetes.default.svc:443
Merge_Log On
Keep_Log On
K8S-Logging.Parser On
K8S-Logging.Exclude On
[OUTPUT]
Name http
Match kube.*
Host parseable
Port 8000
URI /api/v1/ingest
format json
http_User admin
http_Passwd admin
Header X-P-Stream kubernetes_logs
Json_date_key timestamp
Json_date_format iso8601Explanation
-
[SERVICE] (Global Settings)
-
Flush 5→ Sends logs every 5 seconds. -
Daemon Off→ Runs in foreground mode. -
Log_Level info→ Only logs important messages.
-
-
[INPUT] (Reading Container Logs)
-
Name tail→ Uses the tail plugin to read log files. -
Path /var/log/containers/*.log→ Reads all container logs in /var/log/containers/. -
Tag kube.*→ Tags logs with a Kubernetes-specific prefix for filtering. -
Parser docker→ Uses the Docker parser to properly structure logs. -
Refresh_Interval 5→ Scans the file for new logs every 5 seconds. -
Mem_Buf_Limit 10MB→ Buffers logs up to 10MB in memory before flushing. -
Skip_Long_Lines On→ Prevents log truncation issues. -
DB /var/log/flb_kube.db→ Maintains a checkpoint database to track log processing.
-
-
[FILTER] (Processing Kubernetes Metadata)
-
Name kubernetes→ Enables the Kubernetes filter to enrich logs. -
Match kube.*→ Applies the filter to all Kubernetes logs. -
Kube_URL https://kubernetes.default.svc:443→ Connects to the Kubernetes API to fetch metadata. -
Merge_Log On→ Merges multi-line logs into a single structured log. -
Keep_Log On→ Retains the original log structure. -
K8S-Logging.Parser On→ Enables automatic parsing of Kubernetes logs. -
K8S-Logging.Exclude On→ Removes redundant log metadata after parsing.
-
-
[OUTPUT] (Sending to Parseable)
-
Name http→ Uses the HTTP output plugin. -
Match kube.*→ Sends only Kubernetes logs. -
Host parseable→ Sends logs to a Parseable instance. -
Port 8000→ Connects via port 8000. -
URI /api/v1/ingest→ Sends logs to the Parseable API endpoint. -
format json→ Logs are formatted as JSON. -
http_User admin/http_Passwd admin→ Uses authentication. -
Header X-P-Stream kubernetes_logs→ Adds a dataset name (kubernetes_logs). -
Json_date_key timestamp→ Uses "timestamp" as the JSON key. -
Json_date_format iso8601→ Ensures ISO 8601 timestamp format.
-
Understanding Parsers in Fluent Bit
Parsers convert raw logs into structured formats. In this config, we use the Docker parser:
[PARSER]
Name docker
Format json
Time_Key time
Time_Format %Y-%m-%dT%H:%M:%S.%LWhy use a parser?
- Extracts structured fields from JSON logs.
- Converts timestamps into a standard format.
Using OpenTelemetry Output Plugin
Fluent Bit supports sending telemetry data to Parseable using the OpenTelemetry output plugin. This plugin enables Fluent Bit to act as an OpenTelemetry collector, receiving and forwarding logs, metrics, and traces in the Protocol Buffers format.
Configuration Overview
This configuration sets up Fluent Bit to:
- Receive OpenTelemetry data on port 4318 (OTLP/HTTP standard port)
- Route different telemetry types (logs, metrics, traces) to appropriate Parseable endpoints
- Authenticate using basic authentication
- Tag data with dataset names and sources for organization in Parseable
[SERVICE]
Flush 1 # Flush data every second
Log_Level debug # Enable debug logging for troubleshooting
Daemon off # Run in foreground
Parsers_File parsers.conf # Load custom parsers
HTTP_Server On # Enable HTTP monitoring server
HTTP_Listen 0.0.0.0
HTTP_Port 2020 # Monitoring dashboard on port 2020
# OpenTelemetry input to receive OTLP data
[INPUT]
name opentelemetry
listen 0.0.0.0 # Accept connections from any IP
port 4318 # Standard OTLP/HTTP port
tag otel # Base tag for routing
tag_from_uri true # Extract tag from URI path (e.g., /v1/logs → v1_logs)
# Output for OpenTelemetry Logs
[OUTPUT]
Name opentelemetry
Match v1_logs # Match logs from /v1/logs endpoint
Host parseable # Parseable server hostname
Port 8000 # Parseable port
Logs_uri /v1/logs # Parseable logs endpoint
Log_response_payload True # Log server responses for debugging
Tls Off # Disable TLS (use 'On' for production)
Http_User admin # Basic auth username
Http_Passwd admin # Basic auth password
Header X-P-Stream otellogs # Stream name in Parseable
Header X-P-Log-Source otel-logs # Source identifier
Add_label app fluent-bit # Add metadata label
# Output for OpenTelemetry Metrics
[OUTPUT]
Name opentelemetry
Match v1_metrics # Match metrics from /v1/metrics endpoint
Host parseable
Port 8000
Metrics_uri /v1/metrics # Parseable metrics endpoint
Log_response_payload True
Tls Off
Http_User admin
Http_Passwd admin
Header X-P-Stream otelmetrics # Stream name for metrics
Header X-P-Log-Source otel-metrics
Add_label app fluent-bit
# Output for OpenTelemetry Traces
[OUTPUT]
Name opentelemetry
Match v1_traces # Match traces from /v1/traces endpoint
Host parseable
Port 8000
Traces_uri /v1/traces # Parseable traces endpoint
Log_response_payload True
Tls Off
Http_User admin
Http_Passwd admin
Header X-P-Stream oteltraces # Stream name for traces
Header X-P-Log-Source otel-traces
Add_label app fluent-bitKey Configuration Parameters
| Parameter | Description |
|---|---|
tag_from_uri | Automatically creates tags based on the URI path, enabling automatic routing |
X-P-Stream | Required header that specifies the target dataset in Parseable |
X-P-Log-Source | Identifies the type of the data for filtering and analysis |
Add_label | Adds metadata to help identify the data pipeline |
Log_response_payload | Useful for debugging; disable in production for better performance |
Usage Example
Once configured, Fluent Bit will:
- Accept OpenTelemetry data from applications or other collectors at
http://fluent-bit:4318 - Automatically route logs to the
otellogsdataset, metrics tootelmetrics, and traces tooteltraces - Preserve the OpenTelemetry semantic conventions and structure
- Forward all data to Parseable with proper authentication and metadata
Scraping Prometheus Metrics
Fluent Bit can scrape Prometheus metrics from any application exposing a /metrics endpoint and forward them to Parseable. This capability effectively makes Parseable compatible with the entire Prometheus ecosystem, allowing you to collect metrics from thousands of applications that already expose Prometheus metrics.
How It Makes Parseable Prometheus-Compatible
This configuration creates a bridge between Prometheus and Parseable:
- Prometheus Scraping: Fluent Bit acts as a Prometheus scraper, pulling metrics from any Prometheus-compatible endpoint
- Format Conversion: Automatically converts Prometheus exposition format to OpenTelemetry format
- Unified Storage: Stores metrics alongside logs and traces in Parseable for unified observability
Configuration Example
[SERVICE]
Flush 5 # Flush metrics every 5 seconds
Log_Level info # Standard logging level
[INPUT]
Name prometheus_scrape
Host proxy # Target host exposing Prometheus metrics
Port 9090 # Prometheus metrics port
Metrics_Path /metrics # Standard Prometheus metrics endpoint
Scrape_Interval 2s # Scrape metrics every 2 seconds
[OUTPUT]
Name opentelemetry
Match * # Match all scraped metrics
Host parseable
Port 8000
Metrics_uri /v1/metrics # Send to Parseable metrics endpoint
Log_response_payload True # Enable response logging
Tls Off
Http_User admin
Http_Passwd admin
Header X-P-Stream vLLMmetrics # Dataset name in Parseable
Header X-P-Log-Source otel-metrics
Add_label app fluent-bitCommon Use Cases
- Application Metrics: Scrape metrics from web servers, databases, and custom applications
- Infrastructure Monitoring: Collect system metrics from node exporters
- Kubernetes Metrics: Gather metrics from Kubernetes components and workloads
- Service Mesh Metrics: Collect metrics from Istio, Linkerd, or other service meshes
Example Targets
You can scrape metrics from various sources by adjusting the Host and Port:
# Scrape Node Exporter
Host: node-exporter
Port: 9100
# Scrape Kubernetes API Server
Host: kube-apiserver
Port: 6443
# Scrape Custom Application
Host: my-app
Port: 8080This approach allows you to leverage Parseable as a complete observability backend while maintaining compatibility with your existing Prometheus-based monitoring setup.
Was this page helpful?